Reductions in motor unit number estimates (MUNE) precede motor neuron loss in the plasma membrane calcium ATPase 2 (PMCA2)-heterozygous mice.
نویسندگان
چکیده
The potential of MUNE as a unique electrophysiological tool to detect early motor unit abnormalities during a clinically silent period was investigated in the plasma membrane calcium ATPase 2 (PMCA2)-heterozygous mice. There was a significant reduction in MUNE in the PMCA2-heterozygous mice as compared to the wild type littermates at two months of age. In contrast, the compound motor action potential (CMAP) was not altered. The conduction velocity (CV) of the sensory nerve and sensory nerve action potentials (SNAP) were not modified indicating lack of major sensory deficits. Interestingly, despite a decline in MUNE at this age, no changes were detected in choline acetyl transferase (ChAT) positive motor neuron number in the ventral horn of the lumbar spinal cord. Hindlimb grip strength, a test that evaluates clinical dysfunction, was also similar to that of the wild type controls. However, motor neuron number significantly decreased by five months suggesting that a drop in MUNE preceded motor neuron loss. In the two-month-old PMCA2-null mice, reduced MUNE measurements coincided with lower motor neuron number and decreased hindlimb grip strength. The fall in motor neuron number was already detectable at three weeks, the earliest time studied, and became more pronounced by five months. Our results show that even partial reductions in PMCA2 levels are sufficient to cause delayed death of motor neurons and that MUNE may be a reliable and sensitive approach to detect pathology prior to cell loss and in the absence of overt clinical signs.
منابع مشابه
Plasma membrane calcium ATPase deficiency causes neuronal pathology in the spinal cord: a potential mechanism for neurodegeneration in multiple sclerosis and spinal cord injury.
Dysfunction and death of spinal cord neurons are critical determinants of neurological deficits in various pathological conditions, including multiple sclerosis (MS) and spinal cord injury. Yet, the molecular mechanisms underlying neuronal/axonal damage remain undefined. Our previous studies raised the possibility that a decrease in the levels of plasma membrane calcium ATPase isoform 2 (PMCA2)...
متن کاملRole of plasma membrane calcium ATPase isoform 2 in neuronal function in the cerebellum and spinal cord.
The distinct role of plasma membrane calcium ATPase 2 (PMCA2) in the function of different neuronal subpopulations in the central nervous system is not well understood. We found that lack of PMCA2 leads to a reduction in the number of motor neurons in the spinal cord of PMCA2-null mice and to abnormal changes in molecular pathways in Purkinje cells. Thus, PMCA2 may have unique, nonredundant fun...
متن کاملPurkinje cell dysfunction and delayed death in plasma membrane calcium ATPase 2-heterozygous mice.
Purkinje cell (PC) dysfunction or death has been implicated in a number of disorders including ataxia, autism and multiple sclerosis. Plasma membrane calcium ATPase 2 (PMCA2), an important calcium (Ca(2+)) extrusion pump that interacts with synaptic signaling complexes, is most abundantly expressed in PCs compared to other neurons. Using the PMCA2 heterozygous mouse as a model, we investigated ...
متن کاملMolecular alterations in the cerebellum of the plasma membrane calcium ATPase 2 (PMCA2)-null mouse indicate abnormalities in Purkinje neurons.
PMCA2, a major calcium pump, is expressed at particularly high levels in Purkinje neurons. Accordingly, PMCA2-null mice exhibit ataxia suggesting cerebellar pathology. It is not yet known how changes in PMCA2 expression or activity affect molecular pathways in Purkinje neurons. We now report that the levels of metabotropic glutamate receptor 1 (mGluR1), which plays essential roles in motor coor...
متن کاملMaintenance of neuronal size gradient in MNTB requires sound-evoked activity
The medial nucleus of the trapezoid body (MNTB) is an important source of inhibition during the computation of sound location. It transmits fast and precisely timed action potentials at high frequencies; this requires an efficient calcium clearance mechanism, in which plasma membrane calcium ATPase 2 (PMCA2) is a key component. Deafwaddler (dfw2J ) mutant mice have a null mutation in PMCA2 caus...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Experimental neurology
دوره 214 2 شماره
صفحات -
تاریخ انتشار 2008